Human Pluripotent Stem Cell Models for COVID-19 Disease Modeling and Drug Screening

Shuibing Chen
Kilts Family Associate Professor
Director of Diabetes Program
Department of Surgery

08/26/2020
Big Picture

- Patient
 - Reprogramming
 - Directed Differentiation
 - Tissue Engineering
 - Patient-specific pluripotent stem cells
- Replacement Therapy
 - Drug Discovery
 - Patient-specific tissue or organ
Approaches

- Hypothesis-driven (Candidate approach)
- Discovery-driven (Screening approach)

Libraries:
- Chemical libraries
- Growth factor libraries
- Extracellular matrix libraries
- Hormone libraries
COVID-19 affect multiple organs.

Growing evidence suggests the coronavirus, mostly known to cause respiratory illness, can also affect many of the body’s primary organs.

https://projects.sfchronicle.com/2020/virus-organs-graphic/
hPSC-derived Cell/Organoid Models to Study SARS-CoV-2
Cells in the Lung, Colon, and Endocrine Cells Express ACE2 the SARS-CoV-2 Putative Entry Receptor

Lung

Pancreatic endocrine cells

Colon

Cells in the Lung, Colon, and Endocrine Cells Express ACE2 the SARS-CoV-2 Putative Entry Receptor

Cells in the Lung, Colon, and Endocrine Cells Express ACE2 the SARS-CoV-2 Putative Entry Receptor

Cells in the Lung, Colon, and Endocrine Cells Express ACE2 the SARS-CoV-2 Putative Entry Receptor
Human Colon, Beta cells, and Lung Support SARS-CoV-2 Viral Entry

In collaboration with David Ho
scRNA-seq of hPSC-derived Lung Organoids

In collaboration with Joyce Chen

https://www.biorxiv.org/content/10.1101/2020.05.05.079095v1
Lung Organoid Are Permissive to SARS-CoV-2 Infection

In collaboration with Joyce Chen
Human Lung Organoids Support SARS-CoV-2 Viral Replication

In collaboration with Ben TenOever

Weill Cornell Medicine

Diabetes Program in Surgery
hPSC-derived Lung Organoids Shows the Similar Immune Response as COVID-19 Patients

In collaboration with Ben TenOever

Weill Cornell Medicine

Diabetes Program in Surgery
COVID-19 and Diabetes

Zhu et.al., *Cell Metabolism*, 2020
ACE2 expression in Human Islets

Yang et.al., Cell Stem Cell, 2020
Human Islets can be infected by SARS-CoV-2
Human Pancreatic Endocrine Cells Support SARS-CoV-2 Viral Replication

In collaboration with Ben TenOever
Immuno-Response of SARS-CoV-2 Infected Endocrine Cells

In collaboration with Ben TenOever
Global Registry of COVID-19 Associated Diabetes

The NEW ENGLAND JOURNAL of MEDICINE

CORRESPONDENCE

New-Onset Diabetes in Covid-19

http://covidiab.e-dendrite.com/

Potential Anti-SARS-CoV-2 Treatment and Timeline

COVID-19: PROJECTED TIMELINE FOR TREATMENT AND PREVENTION

There are 66 programs working on 3 different approaches:

- **7** repurposed drugs
- **16** antibodies
- **43** vaccines

Development of two screening platforms to identify potent drugs that block SARS-CoV-2 Viral Entry-lung organoids
Drugs block SARS-CoV-2 infection
Imatinib and COVID-19 Clinical Trial

<table>
<thead>
<tr>
<th>Row</th>
<th>Saved</th>
<th>Status</th>
<th>Study Title</th>
<th>Conditions</th>
<th>Interventions</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Recruiting</td>
<td>Trial of Imatinib for Hospitalized Adults With COVID-19</td>
<td>COVID-19</td>
<td>• Drug: Imatinib
• Drug: Placebo oral tablet</td>
<td>University of Maryland Medical Center
 Baltimore, Maryland, United States</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Not yet recruiting</td>
<td>The Safety & Efficacy of Imatinib for the Treatment of SARS-COV-2 Induced Pneumonia</td>
<td>COVID-19</td>
<td>• Drug: Imatinib Mesylate
• Drug: Standard of Care</td>
<td>Hospital Universitario de Fuencarral
 Fuencarral, Madrid, Spain</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Recruiting</td>
<td>Clinical Trial to Evaluate Efficacy of 3 Types of Treatment in Patients With Pneumonia by COVID-19</td>
<td>COVID-19 Pneumonia</td>
<td>• Drug: Hydroxychloroquine
• Drug: Lopinavir/ritonavir
• Drug: Imatinib tablets
• Drug: Baricitinib Oral Tablet</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Not yet recruiting</td>
<td>IMATINIB IN COVID-19 DISEASE IN AGED PATIENTS.</td>
<td>SARS Virus</td>
<td>• Drug: Experimental drug</td>
<td>CHU Bordeaux
 Bordeaux, France
 CH de Versailles
 Le Chesnay, France</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Recruiting</td>
<td>Treatments to Decrease the Risk of Hospitalization or Death in Elderly Outpatients With Symptomatic SARS-CoV-2 Infection (COVID-19)</td>
<td>Corona Virus Infection
Sars-CoV2</td>
<td>• Dietary Supplement: Vitamins
• Drug: Imatinib
• Drug: Favipiravir
• Drug: Telmisartan</td>
<td>Bordeaux university Hospital Bordeaux, France</td>
</tr>
</tbody>
</table>

Show study NCT04357613: IMATINIB IN COVID-19 DISEASE IN AGED PATIENTS.
Summary

- Colon organoids
- Lung organoids
- Pancreatic endocrine cells
- Liver organoids
- Endothelial cells
- Cardiomyocytes
- Macrophages
- Microglia
- Cortical neurons
- Dopaminergic neurons

- SARS-NCDX2DAPI
- SARS-NKRT20DAPI
- SARS-CoV2

- Mock
- SP-CSARS-SDAP
- INSSARS-SDAI

- EC50=4.86 μM
- IC50=37.3 μM

- CoV-2 (Fold Change)
- -Log10 P
- 0
- 20
- 40
- -10 0 +10 +20 -20

- MOCK v.s SARS-CoV-2
- IL1A
- CXCL8
- CXCL6
- CXCL11
- IL1B

- Weill Cornell Medicine

Diabetes Program in Surgery
Acknowledgements

Shuibing Chen
Yuling Han
Xiaohua Duan
Liuliu Yang
Xuming Tang
Jiajun Zhu
Zeping Zhao

Robert Schwartz
Yaron Bram
Vikas Gupta
Duc Nguyen
Vasuretha Chandar

Todd Evans
Fabrice Jaffré
Fong Chong Pan
Ritu Kumar

Lew Cantley
Tomer M. Yaron
Danielle Bulaon

Doug Nixon
Rodrigo Duarte
Timothy Powell
Dennis Copertino

Harold Varmus
Joyce Chen

Mount Sinai
Benjamin tenOever
Benjamin E. Nilsson-Payant
Skyler Uhl

MSKCC
Lorenz Studer
Tae Wan Kim
Oliver Harschnitz
Gabrielle Ciceri
Sudha Guttikonda

MSKCC
Charles Sawyers
Michael Mauro
Zeda Zhang

Columbia U
David D. Ho
Pengfei Wang
Manoj S. Nair
Yaoxing Huang

WCM
Genomic Resource Core Facility

Jenny Xiang
Tuo Zhang
Xing Wang
Dong Xu

Email: shc2034@med.cornell.edu